Phase I, pharmacokinetic (PK), dose-escalation study of EZN-2968, a novel hypoxia-inducible factor-1α (HIF-1α) RNA antagonist, administered weekly in patients (pts) with solid tumors

Background

HIF-1α is a crucial transcription factor that regulates key gene products important in cancer biology. HIF-1α controls processes that include tumor metabolism, pH, neovascularization, and angiogenesis and is regulated at both the mRNA level as well as protein level. HIF-1α stabilization occurs when hypoxic cells are continuously deprived of oxygen-regulated regulatory substances. Several hypoxic mechanisms may result in increased levels of HIF-1α in cancer cells. For example, changes in microvascularity, hypoxia, and alternative mechanisms may result in increased levels of HIF-1α in cancer cells. In particular, in well-oxygenated cells, HIF-1α is continuously degraded in an oxygen-regulated manner by the ubiquitin-proteasome system. In addition to intratumoral hypoxia, multiple other mechanisms may result in increased levels of HIF-1α in cancer cells. Examples of such mechanisms include mutations in genes such as von Hippel-Lindau (VHL), p53, and phosphatase and tensin homing (PTEN); alterations in signaling via phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways; and loss of function of tumor suppressor genes such as ARF and p53.

HIF-1α is highly expressed in normal tissues and is elevated in early primary malignant tumor types. Hypoxic cells, which have high levels of HIF-1α, are resistant to both chemotherapy and radiotherapy. Elevated HIF-1α levels are associated with poor patient survival. Down-regulation of HIF-1α may have broad therapeutic applications.

EZN-2968 is a locked nucleic acid (LNA)-RNA antagonist that specifically inhibits the expression of HIF-1α by repressing its endogenous mRNA levels and leads to the destruction of HIF-1α protein. The efficacy and safety of EZN-2968 in a 16-mer composed of 16 monomeric units, of which 6 DNA nucleotides are replaced with LNA nucleotides. The sequence of EZN-2968 is 5′-GGAACACTAATTGAACG-3′, where upper case indicates LNA residues and lower case indicates DNA residues. The polymerase chain reaction (PCR) and DNA sequencing of a 66-bp fragment from the 5′-end of EZN-2968 revealed 100% sequence identity to the predicted sequence.

EZN-2968 is a 16-mer composed of 16 monomeric units, of which 6 DNA nucleotides are replaced with LNA nucleotides. The sequence of EZN-2968 is 5′-GGAACACTAATTGAACG-3′, where upper case indicates LNA residues and lower case indicates DNA residues. When human cancer cells were transfected with EZN-2968, a highly potent, selective, and durable antagonism of HIF-1α was observed under both normoxic and hypoxic conditions. In vivo administration of EZN-2968 to normoxic mice led to specific dose-dependent, and highly potent down-regulation of endogenous HIF-1α and vascular endothelial growth factor (VEGF) in the brain.

Clinical Study

Study Design

- **3 x 3 design**: Dose escalation to 6 pts to determine the maximum tolerated dose (MTD).
- **MTD dose expansion**: Up to 18 pts.
- **3 centers**

Objectives

- **Determine the MTD**
- **Determine the recommended Phase 2 dose**
- **Evaluate the safety and tolerability**
- **Determine the PK profile**
- **Determine the pharmacodynamic (PD) profile**
- **Determine laboratory parameters, including coagulation factors**
- **Detect any potential evidence of anti-tumor activity**

Key Eligibility Criteria

- **Advanced solid malignant solid tumor or lymphoma; refractory to standard therapy**
- **Eastern Cooperative Oncology Group (ECOG) performance status ≤ 2**
- **Prothrombin time (PT), prothrombin time international normalized ratio (INR), serum creatinine, total bilirubin ≤ 1.5 upper limit of normal**

Methods

- **Pharmacokinetic parameters estimated using noncompartmental model & analyzed using WinNonlin PK software (Version 5.1)**

Pharmacodynamics

Concentrations of the following HIF-Liganded gene products were determined: VEGF, erythropoietin, fibroblast growth factor-2, and transforming growth factor-β (TGF-β). The entire array of gene products was assessed at Weeks 1 (pre-dose), 3, and 6, and each cycle (pre-dose and post-dose). Treatment with EZN-2968 resulted in a series of dose-level dependent and highly potent down-regulation of endogenous HIF-1α and vascular endothelial growth factor (VEGF) in the brain.

Safety and Tolerability

In-cutaneous bleeding (CTLB), an intraocular bleeding at a site of metastasis, was found in one pt in the fourth cohort (2 mg/kg) who had a history of breast cancer with no history of signs or symptoms of brain metastases. This finding necessitated cohort expansion to 8 pts at this dose level. No other SAEs have been observed. The intraocular bleeding resulted in death 17 days after the pt’s last dose of EZN-2968.

Results

Patient and Treatment Information

At the time of the data cutoff, 14 pts had been enrolled and treated. Three pts were still receiving study drug. For the other 11 pts, reasons for discontinuation were determined: 4 pts discontinued due to progressive disease (PD) (18%) (investigator decision (2 pt), death (1 pt), withdrawn consent (1 pt), and hip fracture (1 pt)). The median age of the treated pts was 59 (range: 37-67) (Table 1). Of the 18 pts, 9 (50%) were female and 9 (50%) were male; 94% of pts were white. ECOG performance status was 0 for 7 pts (63 days since baseline), 1 for 1 pt (35 days after first dose) (3 years), and 2 for 1 pt (160+ days). 8 pts had received prior primary chemotherapy. The pt with HCC who had prolonged SD for more than 6 months received 1.5 mg/kg of EZN-2968.

Safety Data

No SAEs have been observed. The intracranial bleeding resulted in death 17 days after the pt’s last dose of EZN-2968.

PK Parameters

PK parameters estimated using noncompartmental model & analyzed using WinNonlin PK software (Version 5.1)

Safety and Tolerability

In-cutaneous bleeding (CTLB), an intraocular bleeding at a site of metastasis, was found in one pt in the fourth cohort (2 mg/kg) who had a history of breast cancer with no history of signs or symptoms of brain metastases. This finding necessitated cohort expansion to 8 pts at this dose level. No other SAEs have been observed. The intraocular bleeding resulted in death 17 days after the pt’s last dose of EZN-2968.

Research

Antitumor Activity

Conclusions

EZN-2968, a novel HIF-1α RNA antagonist, was well tolerated in previously treated pts with advanced malignancies. DLT, intracranial bleeding in the site of a metastasis, was reported in one pt (in cohort 6: 2 mg/kg). For pts support weekly administration of EZN-2968. Posterior vitreous detachment was noted in one pt with HCC. Dose escalation is ongoing.

References

7. The author is affiliated with EonPharmaceuticals, Inc., and company’s stock options under All.

EORTC-NOAAR: Geneva, Switzerland; 23 October 2008